Ultrastructure of primary afferent terminals and synapses in the rat nucleus of the solitary tract: comparison among the greater superficial petrosal, chorda tympani, and glossopharyngeal nerves.
نویسندگان
چکیده
The greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves terminate in overlapping patterns in the brainstem in the rat nucleus of the solitary tract (NTS). There is one region, in particular, that receives overlapping inputs from all three nerves and is especially plastic during normal and experimentally altered development. To provide the requisite data necessary ultimately to delineate the circuitry in this region, we characterized the morphology of the synaptic inputs provided by the GSP, CT, and IX nerves through transmission electron microscopy. Although all three nerves had features characteristic of excitatory nerve terminals, ultrastructural analysis revealed dimorphic morphologies differentiating IX terminals from GSP and CT terminals. IX terminals had a larger area than GSP and CT terminals, and more synapses were associated with IX terminals compared with GSP and CT terminals. Additionally, IX terminals formed synapses most often with spines, as opposed to GSP and CT terminals, which formed synapses more often with dendrites. IX terminals also exhibited morphological features often associated with synaptic plasticity more often than was seen for GSP and CT terminals. These normative data form the basis for future studies of developmentally and environmentally induced plasticity in the rodent brainstem.
منابع مشابه
Chorda tympani nerve terminal field maturation and maintenance is severely altered following changes to gustatory nerve input to the nucleus of the solitary tract.
Neural competition among multiple inputs can affect the refinement and maintenance of terminal fields in sensory systems. In the rat gustatory system, the chorda tympani, greater superficial petrosal, and glossopharyngeal nerves have distinct but overlapping terminal fields in the first central relay, the nucleus of the solitary tract. This overlap is largest at early postnatal ages followed by...
متن کاملModifications of gustatory nerve synapses onto nucleus of the solitary tract neurons induced by dietary sodium-restriction during development.
The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field ex...
متن کاملExpanded terminal fields of gustatory nerves accompany embryonic BDNF overexpression in mouse oral epithelia.
Brain-derived neurotrophic factor (BDNF) is expressed in gustatory epithelia and is required for gustatory neurons to locate and innervate their correct target during development. When BDNF is overexpressed throughout the lingual epithelium, beginning embryonically, chorda tympani fibers are misdirected and innervate inappropriate targets, leading to a loss of taste buds. The remaining taste bu...
متن کاملGustatory terminal field organization and developmental plasticity in the nucleus of the solitary tract revealed through triple-fluorescence labeling.
Early dietary sodium restriction has profound influences on the organization of the gustatory brainstem. However, the anatomical relationships among multiple gustatory nerve inputs have not been examined. Through the use of triple-fluorescence labeling and confocal laser microscopy, terminal fields of the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves ...
متن کاملLack of functional and morphological susceptibility of the greater superficial petrosal nerve to developmental dietary sodium restriction.
Restriction of dietary sodium during gestation has major effects on taste function and anatomy in the offspring. The chorda tympani nerve of offspring that are maintained on sodium-reduced chow throughout life (NaDep) has reduced neurophysiological responses to sodium and altered morphology of its terminal field in the nucleus of the solitary tract. There are many anatomical and physiological s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 502 6 شماره
صفحات -
تاریخ انتشار 2007